北京西门子电缆授权代理商
浔之漫智控技术(上海)有限公司(XMZ-WH-SHQW)
高压变频器简介:
1测量仪表
面对变频器含有大量谐、畸变或是非工频的电量,准确的测量方法是采用具有FFT功能的仪器。
对于高压、大容量的变频器进行测试,由于电压、电流数值较大,一般的仪表不能满足要求,要采用电压或电流传感器,然后再接仪表进行测量。WP4000变频功率分析仪根据搭配不同的变频功率传感器Z高测试可实现电压10kV、电流7000A高压变频器的输入、输出、效率测试。
包括:
输入值:额定输入电压、额定输入电流、额定容量、有功功率、功率因数、输入各次谐波、输入总谐波失真度。
输出值:Z大额定输出电压、额定连续电流、额定功率、频率范围、过载能力、输出各次谐波、输出总谐波失真度。
效率:在设计的频率范围内,各个频率下的效率。
2基本原理
高压大功率变频调速装置被广泛地应用于大型矿业生产厂、石油化工、市政供水、冶金钢铁、电力能源等行业的各种风机、水泵、压缩机、轧钢机等。
在冶金、化工、电力、市政供水和采矿等行业广泛应用的泵类负载,占整个用电设备能耗的40%左右,电费在自来水厂甚至占制水成本的50%。这是因为:一方面,设备在设计时,通常都留有一定的余量;另一方面,由于工况的变化,需要泵机输出不同的流量。随着市场经济的发展和自动化,智能化程度的提高,采用高压变频器对泵类负载进行速度控制,不但对改进工艺、提高产品质量有好处,又是节能和设备经济运行的要求,是可持续发展的必然趋势。对泵类负载进行调速控制的好处甚多。从应用实例看,大多已取得了较好的效果(有的节能高达30%-40%),大幅度降低了自来水厂的制水成本,提高了自动化程度,且有利于泵机和管网的降压运行,减少了渗漏、爆管,可延长设备使用寿命。
调节方法
泵类负载的流量调节方法及原理
泵类负载通常以所输送的液体流量为控制参数,为此,常采用阀门控制和转速控制两种方法。
阀门控制
这种方法是借助改变出口阀门开度的大小来调节流量的。它是一种相沿已久的机械方法。阀门控制的实质是改变管道中流体阻力的大小来改变流量。因为泵的转速不变,其扬程特性曲线H-Q保持不变,如图1所示。
当阀门全开时,管阻特性曲线R1-Q与扬程特性曲线H-Q相交于点A,流量为Qa,泵出口压头为Ha。若关小阀门,管阻特性曲线变为R2-Q,它与扬程特性曲线H-Q的交点移到点B,此时流量为Qb,泵出口压头升高到Hb。则压头的升高量为:ΔHb=Hb-Ha。于是产生了阴线部分所示的能量损失:ΔPb=ΔHb×Qb 。
转速控制
借助改变泵的转速来调节流量,这是一种先进的电子控制方法。转速控制的实质是通过改变所输送液体的能量来改变流量。因为只是转速变化,阀门的开度不变,如图2所示,管阻特性曲线R1-Q也就维持不变。额定转速时的扬程特性曲线Ha-Q与管阻特性曲线相交于点A,流量为Qa,出口扬程为Ha。
当转速降低时,扬程特性曲线变为Hc-Q,它与管阻特性曲线R1-Q的交点将下移到C,流变为为Qc 。此时,假设将流量Qc控制为阀门控制方式下的流量Qb,则泵的出口压头将降低到Hc。因此,与阀门控制方式相比压头降低了:ΔHc=Ha-Hc。据此可节约能量为:ΔPc=ΔHc×Qb。与阀门控制方式相比,其节约的能量为:P=ΔPb+ΔPc=(ΔHb-ΔHc)×Qb。
将这两种方法相比较可见,在流量相同的情况下,转速控制避免了阀门控制下因压头的升高和管阻增大所带来的能量损失。在流量减小时,转速控制使压头反而大幅度降低,所以它只需要一个比阀门控制小得多的,得以充分利用的功率损耗。
效率分析
泵机在变速下的效率分析
随着转速的降低,泵的高效率区段将向左方移动。这说明,转速控制方式在低速小流量时,仍可使泵机高效率运行。
在变频状态下供水方式的研究
在由多点、多泵站构成的供水系统中,需对泵站出口的压头进行控制,以便与管网系统适配,达到更好的系统性能指标,这可以分为恒压供水、变压供水和分时段变压供水。
恒压供水
使泵站出口压头维持不变,是该系统控制的目标。在图4中,给定出口压头为Hg。
当流量Q变动时,因转速变化导致扬程特性H1-Q上下移动,泵的工作点将在H=Hg线上作水平移动(A、B、C、D)。这虽然满足了流量的要求,但因为管阻特性R变陡,造成了能量浪费。
恒压供水系统实施比较方便,易于和多泵站供水的中、大型管网系统相协调,具有一定的通用性,和实用性,所以有些装备调速泵机的自来水厂乐于采用此法,在恒压控制方式下,因泵站出口处的压头维持不变,使泵并联特性与负载的实际特性之间有一定的差距,节能效果不如变压供水系统。
变压供水方式
为了节约能量,应尽量使出口压头随着流量的减小而降低(至少不能升高),此时可采用泵站出口端“变压供水”方式,如图5所示。在图中,因转速下降时扬程特性下移,与管阻特性R1-Q相交于点C,流量从Qa减小到Qc(设流量Qc与恒压控制时的QB相等)。变压控制形成了较大的压差 H=Hac,因而可节约如图5阴线部分所示的能量。变压供水因出口压头降低,抑制了管阻特性变化所赞成的损耗及水泵的附加损耗,节能效果显著。
总结
通过分析,变频器在泵类负载的调速过程中,是可以供水方式进行优化的,已达到更好的节电效果。
3基本分类
高压变频器的种类繁多,其分类方法也多种多样。按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器;按着有无中间低压回路,可分为高高变频器和高低高变频器;按着输出电平数,可分为两电平、三电平、五电平及多电平变频器;按着电压等级和用途,可分为通用变频器和高压变频器;按着嵌位方式,可分为二极管嵌位型和电容嵌位型变频器等等。
电流型
由于在变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。
高压型
由于在变频器的直流环节采用了电容元件而得名,随着技术的进步,高压变频器可以实现四象限运行,也能实现矢量控制,已经成为当前传动系统调速的主流产品。
高低高型
采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。原理是通过降压变压器,将电网电压降到低压变频器额定或允许的电压输入范围内,经变频器的变换形成频率和幅度都可变的交流电,再经过升压变压器变换成电机所需要的电压等级。
这种方式,由于采用标准的低压变频器,配合降压,升压变压器,故可以任意匹配电网及电动机的电压等级,容量小的时候(<500KW)改造成本较直接高压变频器低。缺点是升降压变压器体积大,比较笨重,频率范围易受变压器的影响,还有就是由于引入了变压器使得系统效率比较低。
一般高低高变频器可分为电流型和电压型两种。
高电流型
电路拓扑结构如图1所示,在低压变频器的直流环节由于采用了电感元件而得名。输入侧采用可控硅移相控制整流,控制电动机的电流,输出侧为强迫换流方式,控制电动机的频率和相位。能够实现电机的四象限运行。
高电压型
前段引入降压变压器,将电网降压,然后连接低压变频器。低压变频器输入侧可采用可控硅移相控制整流,也可以采用二极管三相桥直接整流,中间直流部分采用电容平波并储能。逆变或变流电路常采用 IGBT元件,通过SPWM变换,即可得到频率和幅度都可变的交流电,再经升压变压器变换成电机所需要的电压等级。需要指出的是,在变流电路至升压变压器之间还需要置入正弦波滤波器(F),否则升压变压器会因输入谐波或dv/dt过大而发热,或破坏绕组的绝缘。该正弦波滤波器成本很高,一般相当于低压变频器的1/3到1/2的价格。